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Abstract

This paper describes an equivalent but improved least-squares formulation for the numerical approximation of the solu-
tion of partial differential equations. Instead of using variational analysis to impose the conditions for minimizing the
residual, the residuals are minimized directly, thus leading to a method we will denote by Direct Minimization (DM).
DM circumvents setting up the normal equations which consists of matrix–matrix multiplications. Matrix–matrix multi-
plications are expensive, may lead to loss of accuracy and destroy the sparsity pattern present in the original system. The
condition number of the DM formulation is the square root of the condition number which would be obtained if varia-
tional analysis was employed. An element-by-element procedure will be presented which allows for parallelization of DM.
A computational comparison between DM and the conventional least-squares formulation based on variational analysis
will be presented.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The least-squares formulation has proven to be an interesting alternative to Galerkin-type weak formula-
tions for solving systems of partial differential equations. The least-squares method is based on minimization
of a functional of the residual, which is equivalent to the error in a suitably chosen norm. Necessary conditions
for a minimizer may be obtained by applying variational analysis which leads, for well-posed problems, to a
symmetric positive definite (SPD) system of algebraic equations. These systems are therefore amenable to well-
established iterative methods such as pre-conditioned conjugate gradient methods.

Least-squares formulations have been applied to a variety of scientific problems, amongst others: fluid
dynamics, [16], electro-magnetism, [22], sound propagation, [20,21], viscoelastic flows, [10]. In [10] Direct Min-
imization was already used in the discrete formulation.
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Application of the least-squares method to finite element discretizations leads to the least-squares finite ele-
ment method (LSFEM), see [3–6,8,15,16]. LSFEM combines geometric flexibility of the finite element
approach with the desirable minimization properties of the least-squares formulation, thus circumventing
compatibility constraints and saddle-point problems such as encountered in Galerkin type formulations for
mixed methods.

If, instead of low order finite element approximations, high order orthogonal polynomials are used to
approximate the exact solution, the method is called the Least-Squares Spectral Element Method (LSQSEM).
Exponential convergence with polynomial enrichment will take place if the underlying exact solution is suffi-
ciently smooth. The combination of the finite element approach (geometric flexibility), spectral methods (high
order accuracy) and the least-squares formulation (SPD systems) has, for example, been investigated by Proot
and Gerritsma [11,26–28] and Pontaza and Reddy, [24,25].

Despite the attractive features of the least-squares spectral element method, this approach leads to algebraic
systems with relatively high condition numbers compared to least-squares finite element methods and conven-
tional finite/spectral element methods based on the Galerkin formulation. Spectral methods are known to pro-
duce algebraic systems with high condition numbers, [9], and the direct application of the conventional least-
squares formulation may also lead to higher condition numbers. The combination of both techniques is there-
fore prone to lead to excessively high condition numbers.

There are several ways to make the condition number more manageable. The first step that is usually
employed in the least-squares formulation is to rewrite the system of governing equations as an equivalent first
order system, [4–6,15,16]. Transformation to a first order system necessarily introduces new variables which is
often considered an additional cost. However, the newly introduced variables in general represent physical
quantities of interest, such as vorticity or stresses. These physically relevant variables will then be directly
approximated in the least-squares formulation.

A second step is to develop suitable pre-conditioners for the resulting algebraic system. A variety of
approaches is available, from Jacobi pre-conditioning in the Conjugate Gradient solver, [24,25] to Sobolev
pre-conditioning, [17,18].

In this first paper an alternative method will be described which minimizes the residual directly in contrast
to the conventional least-squares formulation where one employs variational analysis to set up the weak for-
mulation. The resulting condition number is only the square root of the condition number that would be
obtained if the conventional least-squares method had been used. In addition, the new method circumvents
a costly matrix–matrix multiplication thus avoiding loss of precision and fill-in in the stiffness matrix. This
paper is restricted to direct solvers; the extension to pre-conditioned iterative Direct Minimization methods
is discussed in the second paper on Direct Minimization.

This paper is organized as follows: In Section 2 the least-squares formulation will be described succinctly. In
Section 3 the spectral element discretization will be given and in Section 4 the conventional least-squares for-
mulation will be presented. In Section 5 Direct Minimization will be discussed. Section 6 addresses solution
procedures for over-determined linear systems. A direct comparison between the conventional least-squares
formulation and Direct Minimization for a simple test problems will be given in Section 7. This paper ends
with the conclusions in Section 8.
2. Least-squares formulation based on variational analysis

Consider the following abstract boundary value problem
LðuÞ ¼ f in X; ð2:1Þ
RðuÞ ¼ g on C � oX; ð2:2Þ
where X 2 Rd is bounded, L is a linear first order partial differential operator and R a trace operator. Both
operators act on a scalar or vector unknown u defined over the domain X. The right hand side of (2.1) is sup-
plemented with a given forcing function f. The right hand side of (2.2) can be set to zero without loss of gen-
erality. We therefore take in what follows g = 0.
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Assume that we can find a function space X, which contains the exact solution to (2.1) and elements sat-
isfying the boundary conditions RðuÞ ¼ 0, and a function space Y such that there $C1, C2 > 0
C1kukX 6 kLðuÞkY 6 C2kukX ; 8u 2 X ; ð2:3Þ
which states that L is a continuous mapping from the function space X onto Y possessing a continuous
inverse.

Second and higher order partial differential equations are first transformed into an equivalent first order
system. The two main reasons to rewrite higher order PDEs into equivalent first order systems are: to reduce
the condition number of the resulting algebraic system and to mitigate continuity requirements between neigh-
boring elements in the discrete approximation.

If the right hand side function f is measurable in the Y-norm and the exact solution uex of the differential
equation is contained in the function space X, the residual norm associated with any approximation uN is
equivalent to the error measured in the X-norm, since by (2.3) and the linearity of L we have constants C1,
C2 > 0 such that
C1kuN � uexkX 6 kLðuNÞ � f kY 6 C2kuN � uexkX : ð2:4Þ
Since k � kX and kLð�ÞkY define equivalent norms for elements u 2 X we approximate the exact solution in
the X-norm by minimizing the residual in the Y-norm. Therefore we introduce the functional
IðuÞ ¼ 1

2
kLu� f k2

Y : ð2:5Þ
Minimizing (2.5) is equivalent to solving the abstract problem given by equations (2.1) and (2.2). The Euler-
Lagrange equations for the minimization of IðuÞ are given by
lim
t!0

d

dt
Iðuþ tvÞ ¼ 2

Z
X
ðLvÞTðLu� f ÞdX ¼ 0 8v 2 X : ð2:6Þ
The least-squares method can therefore be stated as
Find u 2 X such that
Bðu; vÞ ¼ F ðvÞ 8v 2 X ; ð2:7Þ
where
Bðu; vÞ :¼ ðLu;LvÞY ; ð2:8Þ
F ðvÞ :¼ ðf ;LvÞY ; ð2:9Þ
where B a symmetric, bilinear form. If the coercivity constant C1 > 0, this bilinear form is positive
definite.

In practice we choose for the function space Y(X) = L2(X). Other norms such as H(div, X), [23,29,30], are
certainly feasible in the above described framework, but the evaluation and continuity requirements for Sobo-
lev space Hk(X), k > 0, is not easy, especially for fractional Sobolev spaces. In this paper we will evaluate the
residuals in the L2-norm.

3. Spectral elements

Instead of seeking the minimizer over the infinite dimensional space X we restrict our search to a conform-
ing subspace Xh � X by performing a domain decomposition where the solution within each sub-domain is
expanded with respect to a polynomial basis. The domain X is sub-divided into K non-overlapping quadrilat-
eral sub-domains Xk
X ¼
[K
k¼1

Xk; Xk
�
\Xl
�
¼ ;; k 6¼ l: ð3:1Þ
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Each sub-domain is mapped onto the unit cube [�1,1]d, where d = dim(X). Within this unit cube the
unknown function is approximated by polynomials. In this paper a spectral element method based on Legen-

dre polynomials, Lk(x) over the interval [�1, 1], is employed, [7,9,19]. Define the Gauss–Lobatto–Legendre
(GLL) nodes by the zeroes of the polynomial
ð1� x2ÞL0N ðxÞ ð3:2Þ
and the Lagrange polynomials, hi(x) through these GLL-points, xi, by
hiðxÞ ¼
1

NðN þ 1Þ
ðx2 � 1ÞL0N ðxÞ
LN ðxiÞðx� xiÞ

for i ¼ 0; . . . ;N ; ð3:3Þ
where L0N ðxÞ denotes the derivative of the Nth Legendre polynomial.
We can expand the approximate solution in each sub-domain in terms of a truncated series of these

Lagrangian basis functions, which for d = 2 yields
uN ðx; yÞ ¼
XN

i¼0

XN

j¼0

ûijhiðxÞhjðyÞ; ð3:4Þ
where the ûij’s are to be determined by the least-squares method. Since we have converted a general higher
order PDE to an equivalent first order system, C0-continuity suffices to patch the solutions on the individual
subdomains together.

The integrals appearing in the least-squares formulation, (2.7) are approximated by Gauss–Lobatto
quadrature
Z 1

�1

f ðxÞdx �
XN

i¼0

f ðxiÞwi; ð3:5Þ
where wi are the GLL weights given by
wi ¼
2

NðN þ 1Þ
1

L2
N ðxiÞ

; i ¼ 0; . . . ;N : ð3:6Þ
Since we use only first order PDE’s and use GLL-integration to approximate the integrals we need to eval-
uate the derivative of the Lagrangian function at the GLL-points
dhj

dx

����
xi

¼ dij ¼

� NðNþ1Þ
4

i ¼ j ¼ 0
LN ðxiÞ
LN ðxjÞ

1
xi�xj

0 6 i 6¼ j 6 N

0 1 6 i ¼ j 6 N
NðNþ1Þ

4
i ¼ j ¼ N

8>>>><
>>>>:

: ð3:7Þ
The extension to multidimensional problems is performed by using tensor products.
Inserting the finite dimensional approximation and its derivatives in (2.7) and evaluating the integrals using

(3.7) leads to an algebraic system for the unknowns ûij.

4. Conventional least-squares finite element method

In Sections 2 and 3 the approach for the conventional or variational least-squares formulation is described.
This approach can be summarized by
ðLðuÞ;LðvÞÞ ¼ ðf ;LðvÞÞ ()
Z

X
LðuÞLðvÞdX ¼

Z
X

fLðvÞdX; 8v 2 X ðXÞ: ð4:1Þ
The next step consists of domain decomposition where the integration over X is written as the sum of the
integrals over the sub-domains Xk, k = 1, . . . ,K,
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X
k

Z
Xk
LðuÞLðvÞdXk ¼

X
k

Z
Xk

fLðvÞdXk 8v 2 X ðXkÞ: ð4:2Þ
Then we insert the finite dimensional approximation for each element uN ;k ¼
P

iu
N ;k
i /iðxÞ, where the /i are

basis functions, which span the finite dimensional subspace in Xk
X
k

X
i

uN ;k
i

Z
Xk
Lð/iÞLð/jÞdXk

" #
¼
X

k

Z
Xk

fLð/jÞdXk 8/j; j ¼ 1; . . . ;N : ð4:3Þ
It suffices in (4.3) to take v = /j, because L is assumed to be a linear operator and since any arbitrary v in
the finite dimensional subspace is a linear combination of these basis functions.

Inserting the Gauss–Lobatto integration then gives
X
k

X
i

uN ;k
i

X
p

Lð/iÞðxpÞLð/jÞðxpÞwp

" #
¼
X

k

X
p

f ðxpÞLð/jÞðxpÞwp 8/j; j ¼ 1; . . . ;N : ð4:4Þ
Here xp denote the Gauss–Lobatto points and wp the Gauss–Lobatto weights defined by (3.2) and (3.6),
respectively. Note that in the multi-dimensional case xp is a vector, /i is a tensor product and wp is the
product of the Gauss–Lobatto weights in each direction separately. We now define in each element the ma-
trix Ak by
ðAkÞpi ¼ Lð/iÞðxpÞ; ð4:5Þ
i.e. the matrix coefficient denotes the application of the differential operator to the ith basis function evaluated
at the pth Gauss–Lobatto point. Furthermore we introduce the diagonal weight matrix Wk by
ðW kÞpp ¼ wp: ð4:6Þ
The discretized least-squares problem (4.4) can be written as
X
k

ðAkÞTWAk
h i

uN ;k ¼
X

k

ðAkÞTWF
h i

; ð4:7Þ
where the vector F contains the elements (F)p = f(xp). The system of algebraic equations obtained in this way,
i.e. using variational analysis, is called the normal equations. The normal equations reflect on a discrete level
the symmetry that was already mentioned at the continuous level, (2.7). Note that Gauss–Lobatto integration
may be performed on a finer grid than the grid on which the unknowns are defined. In this case the matrix Ak

is non-square, i.e. there are more rows than columns in the matrix. The resulting normal equations, however,
deliver a square, positive definite matrix which possesses a unique solution.

There are various reasons to look for ways to circumvent the use of normal equations. First of all, suppose
that at elemental level the matrix Ak possesses a well-defined sparsity structure that could be utilized in storing
or solving the system, then this sparsity structure will vanish after pre-multiplication with its transpose. Due to
fill-in the number of non-zero entries in the global system may increase significantly.

Furthermore, if the polynomial degree is high, the number of equations to be satisfied and the number of
degrees of freedom is high and we use Gauss–Lobatto integration which is at least as high as the representa-
tion of the unknowns, the size of the matrices Ak is therefore significant. But the matrix multiplication to
obtain the element matrix in (4.7) then becomes very expensive. In fact Proot, [28], has shown that in some
calculations setting-up of the discrete system may take up to 50% of the total CPU time. If we can avoid this
step, then this will considerably speed-up the algorithm.

Not only is the matrix multiplication time consuming, it may also lead to loss of information. Consider for
instance a matrix of the following form:
A ¼
1 1

0 �

� �
; �� 1; ð4:8Þ
where � 6¼ 0 and can be represented by the machine. Pre-multiplication of this matrix with its transpose
gives
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ATA ¼
1 1

1 1þ �2

� �
�

1 1

1 1

� �
; ð4:9Þ
if �2 cannot be represented by the machine accuracy. So ill-conditioned systems may become singular when a
least-squares approach is employed. Such is the case, for example, in Navier–Stokes equations at high Rey-
nolds numbers. If we introduce the vorticity as auxiliary variable to reduce the second order partial differential
operator to an equivalent first order operator, [16], we obtain for steady two-dimensional flow
0 o
ox

o
oy 0

o
ox u o

oxþ v o
oy 0 � o

oy

o
oy 0 u o

oxþ v o
oy �� o

ox

0 � o
oy

o
ox 1

0
BBBBB@

1
CCCCCA

p

u

v

x

0
BBB@

1
CCCA ¼

0

fx

fy

0

0
BBB@

1
CCCA; ð4:10Þ
where � ¼ 1=Re;x ¼ ~r�~u is the vorticity, p denotes the pressure, (u, v) the velocity vector and (fx, fy) the
body force vector. In practical applications the Reynolds number is of the order Re = 106–108. Pre-multipli-
cation by the transpose operator may obscure the full contribution of the �-terms when the contribution of �2-
terms are lost due to the finite precision of our machines.

Even if the contribution of small terms is not lost entirely, setting up the normal equations may reduce the
number of significant digits in the computation.

5. Direct Minimization – LSQSEM–DM

In the previous section we argued that setting up the normal equations is costly, leads to loss of precision
and increases the condition number of the resulting system compared to the system which would have been
obtained without pre-multiplication with the transpose of the partial differential operator. We therefore intro-
duce an equivalent, but improved formulation which circumvents the above mentioned disadvantages. This
can be done by avoiding the variational analysis as was done in (2.6). In order to avoid variational analysis
we start with the original minimization problem (2.5)
Find u 2 X ðXÞ which minimizes the functional IðuÞ ¼ 1

2
kLu� f k2

Y ðXÞ: ð5:1Þ
Since we decompose the computational domain X into a union of non-overlapping sub-domains Xk,
k = 1, . . ., K, we can also write this as
Find all uk 2 X ðXkÞ which minimize the functional

Iðu1; . . . ; uKÞ ¼
XK

k¼1

kLuk � f k2
Y ðXkÞ: ð5:2Þ
Now in each domain Xk we are going to restrict our search to a finite dimensional subspace XN(Xk) � X(Xk)
using the spectral approximation given by (3.4)
Find all uN ;k 2 X N ðXkÞ which minimize the functional

IðuN ;1; . . . ; uN ;KÞ ¼
XK

k¼1

kLuN ;k � f k2
Y ðXkÞ: ð5:3Þ
Next we introduce numerical quadrature to evaluate the integrals which constitute the L2-norm. This gives
Find all uN ;k 2 X N ðXkÞ which minimize the functional

IðuN ;1; . . . ; uN ;KÞ �
XNk

int

p¼0

XK

k¼1

LuN ;k � f
� �2

���
xp

wp; ð5:4Þ
where Nk
int denotes the number of integration points in element k. Introducing our matrix notation (4.5) and

(4.6) this can be written as
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Find all uN ;k 2 X hðXkÞ which minimize the functional

XK

k¼1

AkuN ;k � Fk
� �T

W k AkuN ;k � Fk
� �

¼
XK

k¼1

k
ffiffiffiffiffiffiffi
W k

p
AkuN ;k � Fk
� �

k2
: ð5:5Þ
So the procedure of domain decomposition, insertion of an approximate solution and the use of numerical
integration has converted the minimization in the function space L2(X) to a minimization problem in Euclid-
ean space: Find the finite dimensional vector u ¼ ðu1; . . . ; uKÞT 2 Rn such that the norm in Rm given by (5.5) is
minimized. If m = n, i.e. the number of unknowns in the global system equals the number of equations, the use
of the weight matrix Wk is inconsequential and the problem reduces to a collocation method evaluated in the
GLL-points, [12–14], given by
XK

k¼1

AkuN ;k � Fk
� �

¼ 0: ð5:6Þ
In case m > n, we have more equations than unknowns and the solution which minimizes the residual norm
of the overdetermined system is given by
XK

k¼1

ffiffiffiffiffiffiffi
W k

p
Akuk ¼

XK

k¼1

ffiffiffiffiffiffiffi
W k

p
Fk: ð5:7Þ
Let us for convenience introduce the following notation B ¼
PK

k¼1

ffiffiffiffiffiffiffi
W k
p

Ak and G ¼
PK

k¼1

ffiffiffiffiffiffiffi
W k
p

Fk. Then we
have the following Theorem, [1,2]

Theorem. Let B 2 Rm;n and G 2 Rm, then the following 2 statements are equivalent:

	 Determine the vector u 2 Rn which minimize the Euclidean norm kBu � Gk2.
	 Determine the vector u 2 Rn such that the residual R ¼ G � Bu 2 N ðBTÞ.
Proof. Let Ru denote the residual obtained by Ru = G � Bu. Assume that BTRu = 0, then for any v we have
that
Rv ¼ G � Bv ¼ Ru þ Bðu� vÞ: ð5:8Þ

Then the norm of Rv is larger than the norm of Ru, because
kRvk2 ¼ kRu þ Bðu� vÞk2 ¼ kRuk2 þ 2ðu� vÞTBTRu þ kBðu� vÞk2 ¼ kRuk2 þ kBðu� vÞk2

P kRuk2
: ð5:9Þ
So if BTRu = 0 then u minimizes the residual in the Euclidean norm.
If on the other hand BTRu = z 6¼ 0 then we can find a v ¼ uþ �z for which we have
kRvk2 ¼ kRu � �Bzk2 ¼ kRuk2 � 2�kzk2 þ �2kBzk2
< kRuk2 for sufficiently small � ð5:10Þ
So if BTRu 6¼ 0, then u is not a minimizer of the over-determined system of equations. h

The above Theorem shows that finding the minimizer of the overdetermined system (5.7) is equal to
imposing
XK

k¼1

ffiffiffiffiffiffiffi
W k

p
Ak

 !T ffiffiffiffiffiffiffi
W k

p
Akuk � Fk
� �� 	

¼ 0

()XK

k¼1

ðAkÞTW kðAkÞu ¼
XK

k¼1

ðAkÞTW kFk;

ð5:11Þ
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which is the same equation that we obtained using variational analysis. Therefore, Direct Minimization given
by (5.7) is equivalent to (4.7) as a result of the Theorem.

However note that (5.7) is more appealing to use than (4.7). Since no pre-multiplication is employed we do
not lose the sparsity pattern of the matrix Ak and we prevent fill-in in the global matrix. Bear in mind that Wk

is a diagonal matrix and so is its square root. Pre-multiplication with a diagonal matrix amounts to row-scal-
ing which does not affect the sparsity.

The pre-multiplication with the transpose of Ak is a costly operation that is circumvented by using (5.7)
instead of (4.7).

Furthermore, the number of significant digits in any small parameter in the original system of equation is
retained by Direct Minimization, while is has been shown that this cannot be guaranteed in case we use var-
iational analysis.

6. Solving the over-determined system

The a priori estimates (2.3) guarantee that a unique minimizer exists. This is equivalent to saying: the global
matrix B has full rank. Despite the fact that the system possesses a unique solution we cannot invert the global
matrix B in case m > n, i.e. if we have more equations than unknowns. One way of dealing with such a situ-
ation is to use the pseudo-inverse1. We will introduce the pseudo-inverse here to demonstrate the effect of appli-
cation of variational analysis on the condition number of the resulting system.

Every matrix B 2 Rm;n can be written using a so-called singular value decomposition
1 Th
B ¼ UDVT; ð6:1Þ
where D is an n � n diagonal matrix, U is an m � n orthogonal matrix a V is an n � n orthogonal matrix,
i.e.
UTU ¼ VTV ¼ I 2 Rn;n: ð6:2Þ

If the matrix B is of full rank, the diagonal entries in D are non-zero. These diagonal elements are called the

singular values of the matrix B. In this case the pseudo-inverse of B is defined as
Bpseudo-inv ¼ VD�1UT 2 Rn;m: ð6:3Þ

It is straightforward to show that Bpseudo-invB ¼ I 2 Rn;n. So if we have an over-determined system Bx = f

the solution is formally given by x = Bpseudo-invf. Using the fact that
BTB ¼ VD2VT ) ðBTBÞ�1 ¼ VD�2VT; ð6:4Þ

gives
ðBTBÞ�1
BT ¼ VD�1UT ¼ Bpseudo-inv: ð6:5Þ
So the solution of the over-determined system Bx = f is given by
x ¼ Bpseudo-invf ¼ ðBTBÞ�1
BTf ; ð6:6Þ
which solution is also obtained from the normal equations
BTBx ¼ BTf : ð6:7Þ

So the pseudo-inverse also minimizes the residual.
Having established the relation between the singular value decomposition, the pseudo inverse and the ori-

ginal minimization problem, we will now define the condition number for the non-square matrix B.

Definition. The condition number of a non-square matrix of full rank, cond (B), is defined as the ratio of the
largest absolute singular value over the smallest absolute singular value
e pseudo-inverse is also known as the Moore-Penrose inverse.
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condðBÞ ¼ jdijmax

jdjjmin

: ð6:8Þ
As a consequence of this definition, the condition number of BTB is given by
condðBTBÞ ¼ jdij2max

jdjj2min

¼ condðBÞ2: ð6:9Þ
So the condition number of the normal equations is the square of the condition number obtained by using
Direct Minimization.

Jiang, [16], and Bochev and Gunzburger, [4], demonstrate that for the Stokes and Navier–Stokes equations,
one should always convert the higher order system of partial differential equations into a system of first order
differential equations in order to keep the condition number under control. If in addition to this operation, we
also use Direct Minimization, we can reduce the condition number even further. Jiang, [16], has demonstrated
that by writing the Poisson problem as an equivalent first order system, the condition number of the resulting
linear system of equations scales with mesh refinement in the same way as the system that would be obtained
by application of the Galerkin method. Therefore, Direct Minimization performs even better than the Galer-
kin formulation with respect to the condition number.

In case no reduction to a first order system is possible, since the governing equations are already posed as a
first order system, least-squares produces higher condition numbers than the Galerkin formulation. In this
case the Direct Minimization approach produces condition numbers comparable to the Galerkin formulation.

Although the singular value decomposition is a useful analytical tool in comparing condition numbers, we
will now describe the use of orthogonal methods to solve the over-determined system of equations. The use of
orthogonal methods is particularly efficient for spectral methods, where the element matrices are quite large.

6.1. Global QR

Let us return to our global system of algebraic equation given by
Bu ¼ G() Find u which minimizeskBu� Gk2
; ð6:10Þ
where B 2 Rm;n; u 2 Rn and G 2 Rm. Now for any orthogonal matrix Q 2 Rm;m we have
kQðBu� GÞk2 ¼ kBu� Gk2
; ð6:11Þ
since the Euclidean norm is invariant under orthogonal transformations.
We now decompose the m � n matrix B in a QR-decomposition, B = QR, where Q is an orthogonal m � m-

matrix and R is an m � n upper-triangular matrix. The R matrix can be written as
R ¼
~R

0

 !
; ð6:12Þ
where ~R is an upper-triangular n � n matrix with non-zero diagonal entries, and 0 is an (m � n) � n matrix
with zero entries. With this decomposition we have
kBu� Gk2 ¼ kQTðBu� GÞk2 ¼ kRu�QTGk2 ¼
~R

0

 !
u�

c1

c2

� �












2

¼ k~Ru� c1k2 þ kc2k2
; ð6:13Þ
where c1 is a n-vector and c2 is an m � n-vector. With this decomposition, minimizing the Euclidean norm
is straightforward. The second term, kc2k2, in (6.13) cannot be minimized. The only term that can be made
small – zero in fact – is the first term on the right hand side of (6.13). So we have for the least-squares solution
uLS ¼ ~R�1c1; ð6:14Þ

which is just a back-substitution for the upper-triangular matrix ~R. An approximation to the L2-norm of the
residual is given by the second term, kc2k2, and this value is available without solving for uLS.
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Note again, that when exact arithmetic is used the minimizer uLS is equal to the least-squares solution
obtained by the conventional least-squares formulation which is obtained by applying variational analysis
and solving the normal equations.

As can be seen from the above derivation, Direct Minimization avoids the costly matrix–matrix multipli-
cation to set up the global system matrix, and therefore does not alter the sparsity pattern of the original
matrix A and the condition number is the square root of the condition number that would be obtained by
employing conventional least-squares.

6.2. Schur numbering and block-QR

Although the Direct Minimization approach described in the previous subsection has many desirable fea-
tures, the application of a QR decomposition is much more expensive than applying a Choleski decomposition
to the normal equations.

By applying a suitable numbering of the global degrees of freedom the following matrix structure can be
obtained, see also [1]
A1 E1

. .
. ..

.

AK EK

2
664

3
775

u1
int

..

.

uK
int

uif

0
BBBB@

1
CCCCA ¼

F 1

..

.

F K

0
B@

1
CA; ð6:15Þ
where the matrices Ai are associated with the internal degrees of freedom in each spectral element Xk,
k = 1, . . . ,K, the matrices Ei are associated with degrees of freedom shared by multiple elements, uj

int denote
the degrees of freedom in element j not shared by another element and uif denote the unknowns at the element
interfaces. Since we have a C0 polynomial basis and use Lagrangian basis functions, these elements are asso-
ciated with interface unknowns. Such a structure of the global system matrix is obtained when a global Schur
numbering of the unknowns is used, [28].

The global matrix (6.15) consists of a global assembly of the local element matrices of the form
Bi ¼ Ai E i½ 
: ð6:16Þ
The block-QR algorithm is now applied to all the sub-matrices Ai = QiRi. Pre-multiplication with QT
i then

gives
QT
i Ai Ei½ 
u ¼ QT

i F i ()
~Ri Si

0 T i

" #
uint

uif

� �
¼

ci

di

� �
: ð6:17Þ
This operation can be performed for each element separately and in parallel. Especially for spectral meth-
ods, the matrices Ai are of reasonable size to justify a separate QR-decomposition. For least-squares finite ele-
ment methods, the matrices Ai are generally too small, but then the same procedure can be applied to patches
of elements.

Having performed the QR-decomposition for all spectral elements, we assemble all matrices Ti in a large
global matrix T
Tuif ¼ dglobal ()
T1

..

.

TK

2
664

3
775uif ¼

d1

..

.

dK

0
BB@

1
CCA: ð6:18Þ
This – generally – overdetermined system can again be solved with a QR-decomposition, which gives
QT
if Tuif ¼ QT

if dglobal ()
RT

0

� �
uif ¼

D1

D2

� �
: ð6:19Þ
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This system can now be solved for uif by back-substitution. When the interface solution is known, the ele-
mental internal degrees of freedom follow from (6.17):
~Riuint ¼ ci � S iuif : ð6:20Þ

This back-substitution can be performed parallel again for each spectral element.

7. Numerical results

Despite the fact that Direct Minimization is equivalent to the conventional least-squares approach, the
method is more stable when applied to problems with a high condition number. In order to show the difference
between the conventional LS formulation and Direct Minimization method the two algorithms will be applied
a Poisson equation and the incompressible Navier–Stokes equations.

7.1. The Poisson equation

In this section a sample problem is presented which consists of a modified Poisson equation given by
jD/ ¼ f ðx; yÞ; ðx; yÞ 2 ½�1; 1
2; ð7:1Þ

where
f ðx; yÞ ¼ �2j sin x sin y: ð7:2Þ

The solution in this case is obviously independent of the parameter j, but the condition number of the

resulting system will strongly depend on j.
In order to apply the least-squares formulation which allows for a C0 finite element approximation, the gov-

erning equation needs to rewritten as an equivalent first order system
u� $/ ¼ 0; ð7:3Þ
j$ � u ¼ f : ð7:4Þ
Note that there are other equivalent first order systems possible with improved stability estimates, but this
model problem is only introduced to compare formulations.

Following Jiang, [15], it is easy to show that this problem is well-posed
j2C k/k2
H1ðXÞ þ kuk

2
Hðdiv;XÞ

� 	
6 ku� $/k2

L2ðXÞ þ kj$ � ukL2ðXÞ 6 k/k
2
H1ðXÞ þ kuk

2
Hðdiv;XÞ; ð7:5Þ
for j 6 1. So the coercivity constant scales with j2 and therefore the condition number is bounded by j�2. We
therefore expect to see differences between the conventional least-squares formulation and the Direct Minimi-
zation as proposed in this paper for j� 1. For j = O(1), however, both formulations are expected to give
similar results. In order to assess the improved stability of Direct Minimization the artificially ill-conditioned
system is solved on a 5 � 5 grid with polynomial degree N = 5.

Fig. 1 (left) shows a plot of the solution of the Poisson equation obtained by the conventional least-squares
formulation with j = 1. Fig. 1 (right) gives the solution obtained by Direct Minimization for j = 1. The results
are indistinguishable. This follows from the observation that both methods are equivalent if exact arithmetic is
used.

In Fig. 2 results for the case j = 10�5 are presented, where the differences between the conventional least-
squares formulation and Direct Minimization become apparent. The conventional least-squares formulation
is unable to approximate the exact solution sufficiently accurate due to the loss of precision, whereas Direct
Minimization still approximates the solution sufficiently accurate.

The L2-error for both the conventional least-squares formulation and Direct Minimization versus the
parameter j is depicted in Fig. 3. The conventional least-squares formulation (red line) approximates
the solution rather well for a j up to 10�4 after which the error grows dramatically. Direct Minimiza-
tion is capable of approximating the solution up to a j of O(10�11). Note that the solution is indepen-
dent of j.
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Table 1 shows the condition number of the conventional least-squares and Direct Minimization approach
versus polynomial degree in the spectral element method. The condition number for DM is obtained from
(6.8) and the condition number of LS is the absolute value of the largest over the smallest eigenvalue. One
observes that the condition number of Direct Minimization is approximately the square root of the condition
number associated with the conventional least-squares formulation.

Table 2 shows the growth of the condition number as a function of the number of elements for two poly-
nomial degrees. One observes that, especially for high order methods which employ much higher polynomial
degrees than N = 4, the difference in condition number between the conventional least-squares method and
Direct Minimization grows very fast.

7.2. The incompressible Navier–Stokes equations

In Section 4 it was argued that the use of the conventional least-squares formulation will have detrimental
effects for high Reynolds numbers, which may be circumvented or postponed by using Direct Minimization.

In order to verify this statement we need a test problem where only the influence of the small parameter – in
this case 1/Re – in the discrete system is compared. In general for high Reynolds number flows the whole
dynamics of the flow also changes from two-dimensional to three-dimensional flow, from steady to unsteady
flow and/or from laminar to turbulent flow. In order to assess only the influence of the small coefficient 1/Re in
the system, a simple periodic Couette flow has been chosen.

The Couette flow comprises a two-dimensional flow between two parallel moving plates. The height of the
channel is h = 1 and the length is set to L. The lower plate moves with a velocity ulower and the upper plate
moves with a velocity uupper. An adverse pressure gradient of Dp = poutlet � pinlet = 2/Re is imposed over
the length of the channel. With this choice of pressure gradient, the velocity field becomes independent of
the Reynolds number
Table
Compa
a func

N

2
3
4
5

Table
Condit

K

4
9
16
25
uðx; yÞ ¼ uðyÞ ¼ yðy � hÞ=Lþ ulower þ yðuupper � ulowerÞ=h; ð7:6Þ
vðx; yÞ ¼ 0; ð7:7Þ
and
pðx; yÞ ¼ pðxÞ ¼ C þ x
L

Dp: ð7:8Þ
Since this solution is quadratic, the exact solution can be represented with polynomials of degree N P 2.
The Navier–Stokes equations are written as a first order system as given by (4.10).
1
rison between the condition numbers obtained from Direct Minimization (DM) and the conventional least-squares method (LS) as

tion of the polynomial degree

DM LS

5.934 35.215
11.914 142.056
20.228 409.369
30.646 936.737

2
ion number as a function of the number of elements for Direct Minimization (DM) and the conventional least-squares method (LS)

P = 2 P = 4

DM LS DM LS

4.430 19.635 13.394 197.635
5.935 35.222 20.230 409.635
7.688 59.111 27.060 732.635
9.534 90.891 33.879 1147.786
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For the numerical test we take two spectral elements in the y-direction and two elements per unit length in
the x-direction. For the first exercise we take L = 10 and therefore use a 20 � 2-grid as show in Fig. 4 and a
polynomial degree N = 3. The following boundary conditions have been used:
Fig. 5.
Minim

Table
Comp
a func

Re

100

101

102

103

104

105

106

107
ulower ¼ 1 and uupper ¼ 2:
Despite the fact that the exact solution can be represented by polynomials of degree N P 2, the error will
grow as a function of the Reynolds number due to loss of precision. The L2-error as a function of the Reynolds
number in the x-component of the velocity is displayed in Fig. 5, for Re = 1 � 109. From this figure we see that
the L2-error in the solution grows as Re2 for the conventional least-squares formulation and as Re1 for Direct
Minimization.

This difference in error growth can be directly attributed to the condition numbers for both methods. In
Table 3 the condition numbers for the conventional least-squares method and Direct Minimization are
Fig. 4. Grid used for Couette flow; plates (red), inlet (blue) and outlet (green).
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3
arison between the condition numbers obtained from Direct Minimization (DM) and the conventional least-squares method (LS) as
tion of Re

DM LS

9.57E2 9.15E2
1.99E2 3.97E4
7.08E2 5.03E5
7.08E3 5.01E7
7.08E4 5.01E9
7.08E5 5.01E11
7.08E6 5.01E13
7.08E7 –
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compared. The condition number of the conventional least-squares formulation is the square of the condition
number of Direct Minimization for a given Reynolds number.

A similar trend is observed if we vary the polynomial degree, see Fig. 6. Note that the black lines
which indicate the growth rate of the error are at the same position in all sub-figures of Fig. 6. This
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Fig. 6. The L2-error of the variable u with a fixed L = 5 and variable N.
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indicates that the condition number also grows as a function of the polynomial degree as was mentioned
previously.

The growth of the L2-error as function of the channel length L and the number of elements is displayed in
Fig. 7.

It was argued in this paper that it is advantageous to avoid the costly matrix–matrix multiplication in the
conventional least-squares formulation. However, the use of a QR-decomposition is generally more time con-
suming than the use of a Choleski decomposition for the symmetric, positive definite systems which need to be
solved when the conventional least-squares method is used.

In Fig. 8 the CPU times for both methods are compared for various polynomial degrees. One observes that
in the case of this very simple Couette flow, the least-squares formulation is faster for Reynolds numbers up to
106. The number of non-linear Newton iterations is equal to two for both formulations until the error in con-
ventional LS becomes too big, in which case the number of non-linear iterations and consequently the CPU
time increases significantly. A similar trend is observed in Fig. 9, where the CPU time is shown as a function of
the Reynolds number for various channel lengths, L.

One of the reasons that Direct Minimization as described in this paper is less competitive with the con-
ventional least-squares approach in terms of CPU time, is the use of the expensive full QR-decomposition.
This is a direct consequence of the fact that we use a direct solver in this paper and this requires that we
need both the Q matrix and the R matrix. If an iterative method would have been used, only the R matrix
is required. This R-matrix then acts as a pre-conditioner and does not need to be computed every
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Fig. 7. The L2-error of the variable u for a fixed P = 4 and variable L.
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iteration. Furthermore, when we apply Direct Minimization for an iterative solver, there is no need to set
up the global matrix and the sparsity pattern that was mentioned in this paper can then be fully
employed. The use of iterative methods to solve overdetermined algebraic systems will be addressed in
Part II of this paper.
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8. Conclusions

By directly minimizing the residual in a suitably chosen norm, without variational analysis, a new compu-
tational solution procedure has been found for the least-squares method. Direct Minimization does not require
the costly setup of the normal equations and thereby avoids the squaring of the condition number compared to
conventional LSQSEM. Using a two dimensional model problems, it is demonstrated that for well-conditioned
systems Direct Minimization performs equally well as the conventional least-squares method in terms of accu-
racy, but performs better than the conventional least-squares method for ill-conditioned problems.

The reduction in condition number grows with polynomial degree and number of elements. Direct Mini-
mization is therefore the advocated least-squares method when a large number of high order spectral elements
are used.

Although costly matrix–matrix multiplications are avoided in the use of Direct Minimization, plots of the
CPU time versus the Reynolds number indicate that for the small sample problems presented in this paper, the
conventional least-squares approach is still faster. This is a consequence of the fact that in the direct solver,
described in this paper, both the Q matrix and the R matrix need to be computed.
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